
slide1:
Hello, everyone.#Let’s take a few minutes before we dive into today’s MATLAB 
tutorial to connect what we’ve learned so far.
Over the past lectures, we’ve covered some very important foundations — linear 
systems, convolution, the delta function, Fourier series, Fourier transforms, 
and the sampling theorem. These ideas are deeply connected, and if you 
understand them well, everything that follows will be much easier. If you are 
still unsure about any of these topics, now is a great time to go back and 
review.

slide2:
Anyway, so this is our schedule. We are on schedule, so no problem.
Let me briefly walk you through the big picture again.
A linear system is one where we can predict the output for any input by 
combining the system’s response to simple building blocks. Convolution is the 
tool that allows us to do exactly that — it takes the input signal and the 
system’s impulse response, and combines them to give the output.
The Fourier series is another powerful idea. It tells us that any periodic 
signal can be written as a sum of sine and cosine waves. If we make the period 
infinitely long, this naturally becomes the Fourier transform, which works for 
non-periodic signals.
But computers don’t deal with continuous signals. We must first discretize them 
— that is, represent them as sequences of numbers. This involves sampling in 
time, and sometimes quantizing amplitudes. The sampling theorem assures us that, 
if we sample fast enough — at least twice the highest frequency in the signal — 
we can reconstruct the original waveform perfectly under ideal conditions.
Once we sample in time, something interesting happens in the frequency domain: 
the spectrum becomes periodic. This leads us to the discrete Fourier transform. 
And if we compute it efficiently, we use the fast Fourier transform, or FFT.
These tools are not just theory. They are powerful methods for denoising 
signals, extracting features, and understanding system behavior. But please 
remember — typing “fft” in MATLAB is easy; the real value comes from 
understanding what that result means and why it looks the way it does.
Today, I will guide you through some hands-on MATLAB examples so you can see how 
Fourier analysis works on discrete data, and how these ideas connect back to the 
theory we’ve been building. This is a great chance to make sure the concepts are 
clear in your mind.
Alright, let’s get started.

slide3:
Let me give you a quick roadmap for today’s session.
We’ll begin with discrete convolution. This is simply the convolution operation 
applied to signals that are already in discrete form — sequences of numbers 
rather than continuous waveforms. We’ll explore how to compute it, and why 
sometimes we add extra zeros at the ends of our signals — a technique called 
zero-padding. We’ll also see the idea of circular convolution, and how it 
relates to regular, or linear, convolution.
Next, we’ll move into spectral analysis. This is one of the most common 
applications of Fourier analysis. Here again, zero-padding plays an important 
role — but now it’s in the frequency domain. We’ll also talk about refined 
spectral bins, which allow us to see frequency details more clearly.
Finally, we’ll take what we’ve learned and apply it to two-dimensional filtering 
for images. Using the Fourier transform, we’ll perform noise removal to clean up 
an image, and edge enhancement to bring out important structures.
So, in short — discrete convolution, spectral analysis, and 2D image filtering. 
We’ll work through these step by step, connecting the math to hands-on MATLAB 
demonstrations.

slide4:
Now, let’s take a moment to visualize what the discrete Fourier transform — or 
DFT — really means.
On this slide, you see two columns. On the left, we have signals in the time 
domain. On the right, we have their corresponding representations in the 
frequency domain. The arrows between them remind us that the Fourier transform 



takes us from one domain to the other, and the inverse Fourier transform brings 
us back.
Each row here is a different example. In some cases, we’re multiplying two 
signals in the time domain. In others, we’re convolving them. And each time, 
there’s a matching operation in the frequency domain — because multiplication in 
one domain corresponds to convolution in the other, and vice versa. This is one 
of the most important dual relationships in Fourier theory.
You can also see how different shapes in the time domain create specific 
patterns in the frequency domain. For example:
A narrow pulse in time spreads out in frequency.
A broad, smooth shape in time becomes more concentrated in frequency.
Sampling a continuous signal in time produces repeated copies — or “aliases” — 
in the frequency domain.
By moving row by row, you can start to see the bigger picture: every change we 
make to a signal in one domain has a predictable effect in the other. This is 
exactly why Fourier analysis is so powerful — it gives us two different but 
connected ways of looking at the same signal.
As we go through the rest of today’s examples, keep these relationships in mind. 
They’ll help you understand not just the MATLAB results, but also the deeper 
reason why those results look the way they do.

slide5:
Here’s a simple, visual way to think about convolution.#Imagine you have two 
hand shapes. One is fixed, and the other is flipped and shifted.
In convolution, we take one function — or one signal — and flip it around, just 
like turning a right hand into a left hand. Then, we slide it along the other 
signal. At each position, we calculate how much the two shapes overlap. The 
amount of overlap becomes the value of the convolution at that point.
The picture here shows this idea using two hands. The vertical axis represents 
flipping, and the horizontal axis represents shifting. You can imagine that at 
certain positions, the hands align perfectly, giving a large overlap, while at 
other positions they hardly touch at all, giving a small or zero overlap.
This is exactly what happens in math: convolution measures the similarity 
between a signal and a shifted, flipped version of another signal. This idea 
works whether we are dealing with shapes like these hands, continuous waveforms, 
or sequences of numbers.
By keeping this visual in mind, convolution will feel much less abstract. It’s 
just sliding one pattern over another and measuring how well they match at each 
shift.

slide6:
Here’s our first step in the convolution process — calculating the value at n 
equals zero.
On the top left, the red arrows show f of k, our first discrete signal. On the 
bottom left, the green arrows show g of negative k, which means we have flipped 
the second signal in time.
The formula in the middle tells us what convolution is in mathematical terms: we 
take the sum over all k of x of k multiplied by h of n minus k.
Here, x is our input, and h is our system’s impulse response.
At n equals zero, we line up the flipped signal so that its zero index matches 
the zero index of the original signal. You can think of this like the hand 
illustration on the right: one hand flipped, the other fixed, and their starting 
points aligned at zero.
Now, at each matching position of the red and green arrows, we multiply the 
values together and then sum all those products. That sum is the value of the 
convolution at n equals zero.
This is the key step — convolution is nothing more than multiplying 
corresponding values from two aligned sequences, and then summing the results. 
We repeat this process for each shift of n to get the full convolution.

slide7:
Now let’s see what happens when we compute the convolution at n equals eight.
Just like before, the red arrows on the top represent f of k, and the green 
arrows on the bottom show g of eight minus k — meaning the second signal has 



been flipped and shifted so that its index aligns with n equals eight.
In our hand analogy, you can imagine sliding the flipped hand far enough to the 
right so that only the outer fingers — the “end fingers” — are touching. This is 
the opposite alignment from what we saw at n equals zero.
At this position, only a few of the red and green arrows overlap. We multiply 
those overlapping values and then sum them up. The result gives us the 
convolution value at n equals eight.
By repeating this shifting process for every value of n, we build up the entire 
convolution sequence, one position at a time.

slide8:
Let’s walk through this functional example, which will connect directly to what 
we’ll do in MATLAB later.
We start with h of n, shown in the first plot — a simple rectangular pulse. Then 
we have x of n in the second plot — think of it as three rectangular pulses in a 
row, one shown in red and the other two in blue.
If we take these two signals and perform a linear convolution — shown in the 
third plot — we get a series of triangular shapes. This makes sense: convolving 
two rectangular pulses produces a triangle. Here we have three such triangles 
because x of n contains three rectangles.
Now, in the fourth plot, something changes. We create x  N of n — this means x 
of n is now periodically extended with N samples per period. In other words, 
we’ve made it repeat over and over, which is why we call it circularly extended.
In the fifth plot, we see the linear convolution of this periodic x  N of n with 
h of n. Notice what happens: instead of three clean, separate triangles, the 
edges wrap around, and the red and blue parts start overlapping. These are edge 
effects caused by the circular extension.
Finally, the last plot shows the composite output. The green section in the 
middle is the portion unaffected by edge effects. This part matches the original 
linear convolution result and is what we actually want.
The lesson here is important: to avoid these unwanted overlaps in circular 
convolution, we often use zero-padding — adding extra zeros to the signals 
before performing the convolution. This ensures that the result matches the true 
linear convolution without distortion at the edges.
We’ll explore this zero-padding step in detail in a few slides, and you’ll see 
how MATLAB handles it.

slide9:
Here’s a simple MATLAB example you can try for yourself.
We start by defining two discrete signals — or vectors in MATLAB — x and h. In 
this case:#x equals 5,4,3,2,1#h equals 1,2,3,4,5
Next, we perform a convolution using MATLAB’s built-in conv function:#y equals 
conv x, h;
Finally, we plot the result:#plot y; ylim 0 to 100;
What do we see? A clean triangular shape. This is exactly what we expect when we 
linearly convolve two finite sequences that look like ramps in opposite 
directions. The convolution produces a sequence that starts small, rises to a 
peak — here at the center — and then falls symmetrically.
This simple example is a good reminder that convolution is not mysterious. It’s 
just a systematic way of multiplying and summing overlapping parts of two 
signals. And MATLAB makes it easy to visualize.

slide10:
Now let’s think about circular convolution.
Earlier, with linear convolution, we had just one pair of signals sliding past 
each other. In this hand analogy, that meant one top hand and one bottom hand.
Here, with circular convolution, the situation is different. The signal is 
treated as if it repeats periodically — just like in our earlier example from 
Wikipedia. So instead of one top hand, we now have several copies in a row, as 
shown here with three hands.
When we slide the lower signal, we can’t “run out” of data on either end, 
because the pattern simply wraps around. That means parts of the signal from the 
end overlap with parts from the beginning.
In the picture, you can see that the fingers from the lower hands are 



overlapping with the fingers from the upper hands — not just in the middle, but 
also across the boundaries. This wrapping-around effect is exactly what creates 
the edge overlaps we saw earlier.
If we don’t want those overlaps to distort our result, we need to use zero-
padding before performing the convolution. That’s the key difference between the 
clean linear convolution result and the wrapped-around circular convolution 
result.

slide11:
Now, let’s see how zero-padding helps us fix the edge effect problem we saw with 
circular convolution.
In the earlier example, the red and green lines — representing the start and end 
of the main region we care about — were very close together. This caused the 
signal to wrap around and overlap in places we didn’t want.
Zero-padding means we insert extra zeros at the ends of our signals before 
performing the convolution. In this hand analogy, adding zero-padding is like 
putting some extra space between the hands. The top and bottom hands are now 
farther apart before they start overlapping.
As a result, the main section we care about — here marked in red — remains 
untouched by unwanted overlaps. The green section, which previously had 
interference from wrapping, now stays clean.
This is exactly how we prevent the distortion seen in the Wikipedia example: by 
padding with enough zeros, the circular convolution result becomes identical to 
the true linear convolution result.

slide12:
Here’s a straightforward MATLAB example to show linear convolution in action.
We start with two sequences:#x equals 5,4,3,2,1,0#h equals 1,2,3,4,5,6
The first figure shows both sequences plotted together. The blue line is x — 
starting high and decreasing. The red line is h — starting low and increasing.
Now we use MATLAB’s built-in conv function to compute their linear 
convolution:#lconv equals conv x, h;
When we plot the result, we see the familiar triangular shape. It rises as the 
two signals increasingly overlap, reaches a peak when their centers align, and 
then falls as the overlap decreases.
If this feels familiar, it’s because we used the same function — conv — earlier 
when convolving the RC circuit’s impulse response with the unit step function in 
your homework. The process is exactly the same here; only the input sequences 
are different.
This example is a nice reminder that MATLAB makes it very easy to visualize 
convolution, and seeing the result in a plot helps reinforce what’s happening 
mathematically.

slide13:
Here’s where we can clearly see the difference between linear convolution and 
circular convolution without zero padding.
In MATLAB, we can perform circular convolution using the Fourier transform 
approach. First, we take the FFT of our two sequences, x and h. Then, we 
multiply their spectra point by point. Finally, we take the inverse FFT to bring 
the result back into the time domain.
Mathematically, multiplication in the frequency domain is equivalent to 
convolution in the time domain — but here’s the key point: if we don’t use zero-
padding, the convolution we get is circular by nature.
In the plot below, the blue curve is the circular convolution result without 
zero-padding. The red dashed curve is the linear convolution result from our 
earlier example.
Notice how the blue curve is distorted — it doesn’t match the clean triangular 
shape of the red curve. That distortion comes from the wrapping-around effect we 
talked about earlier: parts of the signal from the end are interfering with 
parts from the beginning.
This is why zero-padding is essential when we want the frequency-domain method 
to give the same result as linear convolution. Without it, circular convolution 
will give you something different.



slide14:
Here we see why zero-padding is the key to making circular convolution match 
linear convolution.
We begin by setting N to be the length of x plus the length of h, minus 1. This 
value of N is exactly the length of the linear convolution result — something 
you’ve already seen in your RC circuit homework.
Next, we create padded versions of our two signals:
x pad starts with the original values of x, followed by enough zeros so that its 
length is N.
h pad is created in exactly the same way, starting with h and then adding zeros 
to reach length N.
Now, we take the FFT of these zero-padded signals, multiply them point by point 
in the frequency domain, and take the inverse FFT to return to the time domain.
When we plot the result, we see that the zero-padded circular convolution — 
shown in blue — lies exactly on top of the linear convolution — shown in red. 
This perfect match confirms that zero-padding has removed the unwanted wrap-
around effects and given us the correct, undistorted result.
So the takeaway is clear: if you’re using the FFT method to compute convolution, 
always add enough zero-padding to get the true linear convolution.

slide15:
Now that we’ve explored convolution in detail — both in the time domain and 
through the FFT method — let’s move into one of the most common and powerful 
applications of the Fourier transform: spectral analysis.
Spectral analysis is about looking at a signal in the frequency domain to see 
what frequencies are present and how strong they are. This is incredibly useful 
in engineering, science, and even everyday technology — from analyzing audio 
signals, to detecting features in images, to identifying patterns in biomedical 
data.
In the upcoming slides, we’ll take an example signal, examine its spectrum, and 
then see how techniques like zero-padding and refining spectral bins help us get 
a clearer, more detailed view of its frequency content.
Let’s start by looking at our example signal and breaking it down step by step.

slide16:
Let’s start our spectral analysis with a simple but quite subtle example.
We’ll create a signal that contains two different pure tones — one at one 
hundred hertz and the other at two hundred two point five hertz.
In MATLAB, we first set the sampling frequency, F s, to one thousand hertz. That 
means we take one thousand samples every second.
Next, we create the time vector, t. It starts at zero seconds and increases in 
steps of zero, zero point zero zero one seconds — that’s one millisecond — until 
just before one second.
Now, our signal x is built by adding two parts:
First, a cosine wave with frequency one hundred hertz. In MATLAB, that’s written 
as: cosine of open parenthesis two times pi times one hundred times t close 
parenthesis.
Second, a sine wave with frequency two hundred two point five hertz. In MATLAB, 
that’s: sine of open parenthesis two times pi times two hundred two point five 
times t close parenthesis.
When we add these two waveforms together, we get x, which contains both 
frequencies.
If we plot only the first one hundred samples, we can see the combined 
oscillations. Sometimes the waves reinforce each other, producing larger peaks; 
other times they partially cancel out, making smaller peaks.
This is the time-domain view. Next, we’ll use the Fourier transform to find 
these frequencies in the frequency domain — and then we’ll explore how zero-
padding can help us make those frequencies stand out more clearly.  It takes 
some effort to appreciate the benefit of zero-padding!

slide17:
Now, let’s look at the spectrum of our synthetic signal without applying any 
zero-padding.
We perform the Fourier transform of our signal using the FFT function. This 



gives us the discrete frequency components of the signal. Then, we plot the 
magnitude of the FFT against frequency, with frequency in hertz along the 
horizontal axis.
From the plot, we can clearly see a sharp spike at one hundred hertz. That spike 
corresponds exactly to the first or cosine component we built into the signal.
But notice something important — the second or sine component, at two hundred 
two point five hertz, does not appear as a clear spike. Instead, it’s blurred 
and not well-resolved. This happens because two hundred two point five hertz is 
not exactly aligned with one of the FFT’s default spectral bins, which are 
spaced one hertz apart.
So, without zero-padding, the FFT resolution is limited by the number of samples 
we have. The first frequency happens to align perfectly with a bin, so it looks 
sharp. The second one falls between bins, so its energy is spread out over 
multiple points in the plot, making it appear a bit blurry and less distinct.
We’ll see in the next slide how zero-padding helps us refine the spectral bins 
and make that second frequency stand out much more clearly.

slide18:
Now let’s see what happens when we add zero-padding before taking the Fourier 
transform.
This time, when we call the FFT function, we specify a length of two thousand. 
That means we take our original signal and append enough zeros to make it two 
thousand points long before computing the FFT.
By doing this, we change the spacing between frequency bins. Previously, without 
padding, the bins were one hertz apart. Now, the bin spacing is F s divided by 
two thousand, which equals zero point five hertz. This finer spacing allows us 
to more accurately pinpoint frequencies that fall between the old one-hertz 
bins.
When we plot the result, we still see the sharp spike at one hundred hertz. 
Also, we now see a very clear spike at two hundred two point five hertz — the 
second frequency in our original signal.
The reason is simple: with zero-padding, we’ve increased the frequency 
resolution of the spectrum, making it possible to distinguish both components of 
our signal cleanly.
So, zero-padding doesn’t create new information — it simply lets us view the 
spectrum at a finer scale, revealing details that would otherwise be hidden 
between coarse frequency bins.

slide19:
Let’s look at a more complex example — a continuous signal that contains several 
frequency components.
We start with the same two frequencies from our earlier example: a cosine wave 
at one hundred hertz and a sine wave at two hundred two point five hertz.
Then, we add three more components:
A cosine wave at forty-five hertz
A cosine wave at four hundred seven hertz
And a sine wave at four hundred forty-five point eight hertz
When we add all these together, we get a signal that looks quite messy in the 
time domain — as you can see in the plot. The rapid oscillations and varying 
amplitudes come from the interaction of all these frequencies.
Looking at this time-domain plot alone, it’s not easy to tell exactly what 
frequencies are present or how strong they are. That’s where the Fourier 
transform becomes incredibly valuable — it lets us switch to the frequency 
domain, where each frequency component appears as a distinct peak, making the 
signal’s composition much clearer.
In the next step, we’ll apply the Fourier transform to this signal and see how 
it reveals the underlying structure that’s hidden in the time-domain view.

slide20:
Here’s the spectrum of our multi-frequency signal without zero-padding and 
without refining the frequency bins.
When we take the FFT and plot the magnitude against frequency in hertz, some 
frequencies stand out clearly, while others do not.
Look at forty-five hertz — this is a clean, discrete value, and it aligns 



perfectly with an FFT bin. As a result, its spike reaches the maximum amplitude 
of one, just as we would expect.
But for the frequencies at two hundred two point five hertz and four hundred 
forty-five point eight hertz, things are different. Because these frequencies do 
not align exactly with the FFT’s default bin spacing, their energy is spread 
across multiple bins. This makes their peaks appear lower than one and less 
sharply defined.
So, without zero-padding — and therefore without finer bin spacing — our 
frequency resolution is limited. Frequencies that happen to fall exactly on a 
bin are well-resolved, but others that fall in between bins are smeared out and 
not as clear.
Next, we’ll see how refining the bins through zero-padding improves our ability 
to clearly detect those non-integer frequencies.

slide21:
Now, let’s refine our frequency bins by a factor of two — the same idea we used 
earlier when going from one-hertz bins to zero-point-five-hertz bins.
We do this by setting a bin-refine factor equal to two, and then increasing the 
FFT length to be two times the number of samples in our original time vector. In 
practice, this means appending enough zeros to double the length of the signal 
before computing the FFT.
When we plot the result, the improvement is clear: the frequency at two hundred 
two point five hertz is now well resolved, showing a sharp and distinct peak.
However, notice that the frequency at four hundred forty-five point eight hertz 
is still not well resolved. Even with a bin spacing of zero-point-five hertz, 
this frequency does not fall exactly on one of the discrete FFT bins, so its 
energy is still spread across multiple bins. The peak is visible but not as 
sharp or as tall as the perfectly aligned frequencies.
The takeaway is that zero-padding and bin refinement improve resolution, but 
they cannot create a perfectly sharp spike unless the frequency exactly matches 
a discrete bin location.

slide22:
Now, let’s refine our frequency bins even further — this time by a factor of 
four.
In MATLAB, that means setting the bin-refine factor to four and increasing the 
FFT length to four times the length of our original time vector. In other words, 
we append enough zeros so that the signal length is quadrupled before computing 
the FFT.
By doing this, our frequency bin spacing changes from one hertz to zero-point-
two hertz. This very fine resolution means that even frequencies like four 
hundred forty-five point eight hertz — which were previously hard to resolve — 
now align closely with a bin and show a sharp, well-defined spike.
When we plot the result, every frequency in our multi-component signal — forty-
five hertz, one hundred hertz, two hundred two point five hertz, four hundred 
seven hertz, and four hundred forty-five point eight hertz — is clearly visible, 
each with a maximum amplitude of one.
This example confirms that refining the bin spacing through zero-padding greatly 
improves our ability to detect non-integer frequencies. With enough refinement, 
even challenging frequencies can be resolved as sharply as those that naturally 
align with the original bin spacing.

slide23:
So far, we’ve looked at the Fourier transform in one dimension — signals that 
vary with time. But Fourier analysis is just as powerful in two dimensions, and 
that’s exactly what we need for image processing.
In the context of images, the two dimensions are the horizontal and vertical 
spatial coordinates, rather than time. Just as a one-dimensional Fourier 
transform tells us what frequencies are present in a signal, a two-dimensional 
Fourier transform tells us what spatial frequencies are present in an image.
This is a critical tool in image analysis, because many image processing tasks — 
such as noise removal or edge enhancement — are easier to understand and perform 
in the frequency domain.
In the next slides, we’ll see how 2D Fourier transforms can be applied to 



filtering images, starting with noise removal and then moving on to edge 
enhancement.

slide24:
Here we see the concept of the two-dimensional Fourier transform.
The equations at the top describe two processes:
The forward 2D Fourier transform, which takes a spatial-domain function — 
something that varies in the x and y directions — and expresses it in terms of 
its spatial frequency components.
The inverse 2D Fourier transform takes that frequency-domain representation and 
reconstructs the original spatial-domain function.
In our example, the starting function is shown as a sideways rectangle in the 
spatial domain. When we perform the 2D Fourier transform, we obtain a frequency-
domain representation — shown here in the rainbow-colored plot. The colors 
represent the amplitude of different spatial frequency components, and the 
values can be complex, with both real and imaginary parts.
Just as in the one-dimensional case, the Fourier transform lets us switch back 
and forth between two perspectives:
In the spatial domain, we see shapes and patterns directly.
In the frequency domain, we see how much of each spatial frequency is present in 
the image.
Understanding this relationship is essential for image processing, because many 
operations — such as filtering, noise removal, and edge detection — can be 
performed more effectively in the frequency domain.

slide25:
In image processing, noise can often hide important details. This is a common 
problem in real-world applications, especially when images are captured in low 
light, transmitted over noisy channels, or acquired using sensors in a 
challenging environment.
Here, we start with an image — the well-known “Lena” test image — that has been 
corrupted by noise. In the top left, you can see the noisy image in the spatial 
domain.
When we take the two-dimensional Fourier transform of this image, shown in the 
bottom left, we see its frequency-domain representation. The bright spot in the 
center corresponds to low-frequency components, which carry the main shapes and 
structures of the image. The scattered speckles throughout the spectrum 
represent higher-frequency noise.
If we want to reduce noise, we can selectively remove certain frequency 
components. One simple way is to set the outer regions of the spectrum to zero, 
while keeping only the frequencies near the center — this is essentially a low-
pass filter in the frequency domain. In the bottom right, you can see this 
filtered spectrum.
Finally, applying the inverse Fourier transform gives us the restored image in 
the top right. The noise is greatly reduced, and the underlying features — such 
as the woman’s face and hat — become much clearer.
This kind of frequency-domain noise suppression is a powerful technique in 
imaging, allowing us to recover important details that would otherwise be lost.

slide26:
We’ve just seen how Fourier transforms can be used to remove noise. Now, let’s 
look at two related techniques — low-pass filtering and high-pass filtering — 
and how they affect an image.
Starting with the original image of the building, shown in the top left, we 
first take its two-dimensional Fourier transform. This gives us the frequency-
domain representation, shown in the bottom left.
If we want to blur the image or remove fine details, we apply a low-pass filter. 
In the frequency domain, this means keeping only the low-frequency components 
near the center of the spectrum — as shown in the middle bottom image — and 
setting the high frequencies to zero. After applying the inverse Fourier 
transform, we get the middle top image: the overall structure is preserved, but 
the sharp edges are softened.
On the other hand, if we want to highlight edges and fine details, we use a 
high-pass filter. This is done by removing the low-frequency center and keeping 



only the higher frequencies in the spectrum, as shown in the bottom right. The 
resulting image, in the top right, emphasizes edges and textures, but loses 
smooth gradients.
Low-pass and high-pass filters are fundamental tools in image processing — 
whether we want to smooth an image, detect edges, or prepare data for further 
analysis.

slide27:
In image processing, we often use specialized filters to enhance certain 
features or to suppress unwanted information. Here are three common examples, 
shown both in the spatial domain and in the frequency domain.
First, the Unsharp Filter. Despite the name, this filter is used to sharpen 
images. It works by subtracting a blurred version of the image from the 
original, which enhances the edges. In the spatial domain, you can see the 
filter kernel — dark around the edges, light in the center — designed to 
emphasize changes in intensity.
Next, the Gaussian Filter. This is a smoothing filter, which reduces noise and 
small details. In the spatial domain, it appears as a soft, bell-shaped pattern 
— bright in the middle, fading smoothly outward. Its frequency-domain 
representation shows that it preserves low frequencies while gradually 
suppressing high frequencies.
Finally, the Sobel Filter. This is an edge detection filter, which highlights 
regions of rapid intensity change. In the spatial domain, you can see its 
distinctive pattern — one side light, the other dark — which responds strongly 
to vertical or horizontal edges depending on its orientation. In the frequency 
domain, its pattern reflects the fact that it suppresses low frequencies and 
emphasizes specific directional components.
MATLAB provides built-in functions for these filters, including fspecial for 2D 
and fspecial3 for 3D filtering, as well as options to design your own custom 
kernels. By choosing the right filter and domain of application — spatial or 
frequency — we can control exactly what features of an image are enhanced or 
suppressed.

slide28:
Here we have an example showing the effects of different image filters, both in 
the spatial domain and in the frequency domain.
In the top left is our original image — a close-up of an eye. Next to it, in the 
top right, we see its two-dimensional Fourier transform, which shows the 
frequency content of the image.
On the second row, we have three filtered versions of the image in the spatial 
domain:
Unsharp Image — produced by applying an unsharp filter, which enhances edges and 
fine details by subtracting a blurred version of the image from the original.
Gaussian Blurred Image — generated using a Gaussian filter, which smooths the 
image by reducing high-frequency details, resulting in a softer appearance.
Sobel Filtered Image — created using the Sobel operator, which emphasizes edges, 
particularly strong intensity changes. In the eye image, you can clearly see the 
contours of the iris, eyelid, and surrounding features.
The third row shows the corresponding frequency-domain representations for each 
filter.
For the Gaussian blur, you can see that high-frequency components are greatly 
reduced, as indicated by the darker edges in the spectrum.
For the unsharp filter, higher frequencies are more pronounced, showing stronger 
edge components.
For the Sobel filter, the spectrum highlights frequencies associated with sharp 
transitions in the image, which is why it’s effective for edge detection.
By choosing different filters, we can highlight or suppress specific image 
features — whether we want to sharpen details, blur textures, or extract edges 
for further analysis.

slide29:
That brings us to the end of today’s lecture.
We’ve covered quite a lot — from discrete convolution and zero-padding, to 
spectral analysis, bin refinement, and practical applications in two-dimensional 



image filtering. I hope you now have a clearer picture of how these concepts 
connect and how they are applied in real-world signal and image processing.
Take some time to review the examples and try the MATLAB code on your own. 
Seeing the results firsthand will help solidify your understanding.
Thank you for your attention, and I look forward to seeing you in the next 
lecture.


